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Gene therapy and stem cells in the
treatment of congenital diseases
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Several congenital diseases are particularly attractive candidates for intervention using gene therapy since
the underlying molecular bases for most of the monogenic disorders are well-understood. Transplantation of

ex vivo genetically modified stem cells has also shown promise. Although all of these systems are meritorious
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INTRODUCTION

Congenital discases are responsible for over a third of all
pediatric hospital admissions. Advances in prenatal screening
and molecular diagnosis have allowed the detection of many
life-threatening genetic diseases early in gestation. The options
of preemptive treatment of congenital diseases in utero by
gene therapy or stem cell changes the perspective of congenital
diseases since it may avoid the need for postnatal treatment and
reduce future costs.

GENE THERAPY

Gene therapy is promising in the treatment of many congenital
diseases. With all the hoopla surrounding the Human Genome
Project, it is understandable that people would entertain high
hopes for the advancement of gene therapy. It falls into three
groups: (1) replacing a defective or bad adaptive gene that’s
responsible for some monogenic disease, (2) altering or killing
an aberrant cell (e.g. infected by HIV or cancerous) and (3)
inducing production of a therapeutic protein. Initially, gene
therapy focused on the first group, but most current research
focuses on the other two. Whatever the application, numerous
hurdles stand in the way of developing a successful gene
therapy. These obstacles include identifying an appropriate
target for gene therapy such as getting a therapeutic transgene
into the right cells (and only those cells) in the right amount;
delivering the transgene with a vector that does not trigger an
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and worthy of continued investigation, this mini-review article focused on the platforms that have received the
most attention and that are maturing in the clinical setting; in particular, the potential of in vivo gene therapy
and human-induced pluripotent stem cells. Studies of apparently disparate diseases that are presumably linked
through shared metabolic pathways are likely to provide greater insights into the biology of the diseases.
This and other opportunities for exchange will hopefully foster acceleration in the development of new and
innovative therapies for these devastating diseases.
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immune response or, in the case of certain viral vectors, revert
to a pathogenic form; providing the appropriate regulatory
elements for turning the gene on and off at the correct time;
keeping the transgene in the target cell long enough for it to
do its job; and keeping the transgene from causing damage
elsewhere [1-6]. The advances in gene therapy hold significant
promise for the treatment of ophthalmic conditions such
as heritable diseases of the retina [7-9], endocrinology [10],
theumatic diseases [11-13], Alzheimer’s disease [14], diseases
of the gastrointestinal tract [15-22], therapy of cancer [23-27]
and neurological disorders [28,29]. In addition, diseases like
inborn errors of metabolism (include the diseases resulting
from enzyme defects in biochemical reactions due to genetic
mutations), and human peroxisomal disorders (caused by
peroxisomal ABC half-transporters mutation which is localized
in the peroxisomal membrane) could be candidate to gene

therapy [30-33].

In addition, artificial chromosomes (ACs) are highly promising
vectors for use in gene therapy applications. They are able to
maintain expression of genomic-sized exogenous transgenes
within target cells, without integrating into the host genome.
The recent developments in AC technology present improved
methods for the production, purification, delivery, and natural
transgene expression of genomic sized loci. These technologies
are all steps forward in alleviating problems associated with
synthetically produced ¢cDNA. In addition, AC technology
is proving to be highly compatible with stem-cell research.
With further development, ACs could be used to improve the
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efficacy of gene therapy by providing physiologically appropriate
expression of transgenes in vivo in target tissues [34]. Moreover,
carbon nanotubes have been proposed and are actively being
explored as innovative multipurpose carriers for biomolecules
and diagnostic applications. They are used in the controlled
release of drugs as well as delivery of genetic material such as
DNA, genes, and antibodies [35-37].

Ethical and political issues need to be addressed, but, over the
long-term, the future of drug therapy could be gene therapy.
Then, this article focused on the potential of in vivo gene therapy
and alternative sources of pluripotency as perspectives in the
treatment of congenital diseases.

ALTERNATIVE SOURCES OF PLURIPOTENCY

It has recently been shown that the first cleavage plane of
the mouse zygote defines the border between the embryonic
and abembryonic parts of the blastocyst and that this border
correlates with the sperm entry position (SEP). Plusa et al. [38]
developed a means of fluorescently labeling sperm that can
record the exact site of its penetration when the label transfers
to the egg surface. This approach indicates that the SEP marks
the first cleavage in the great majority (88%) of embryos, e.g. life.

In the same way, Takahashi et al. [39] and Yu et al. [40] suggested
alternative sources of pluripotency. They demonstrated that
expression of four specific transcription factors (Oct4, Sox2,
Klf4, and ¢-Myc) gives adult human fibroblasts many of the
characteristics of human embryonic stem cells (hESCs).
Refinements of this procedure will make it possible to
produce pluripotent human cell lines without the use of an
embryo [41-46]. In addition, human induced pluripotent stem
(1PS) cells obtained by reprogramming technology are a source
of great hope, not in terms of applications in regenerative
medicine, such as cell transplantation therapy, but also for
modeling human diseases and new drug development. In
particular, the production of iPS cells from the somatic cells
of patients with intractable discases and their subsequent
differentiation into cells at affected sites (e.g., neurons,
cardiomyocytes, hepatocytes, and myocytes) has permitted
the in vitro construction of disease models that contain
patient-specific genetic information [47-95]. For example,
disease-specific iPS cells have been established from patients
with neuropsychiatric disorders, including schizophrenia and
autism, as well as from those with neurodegenerative diseases,
including Parkinson’s disease and Alzheimer’s disease [96-102].

Finally, stem cells have the capability to proliferate and
differentiate into various cells of the body. Few stem cell
sources have been approved for transplantation; among them
are the hematopoietic progenitor cells which are progenitors
of the myeloid and erythroid lineage in the hematopoietic
system that continually provides mature blood cells during
the lifespan of the individual. These well-characterized stem
cells are clinically relevant in the treatment of discases such as
breast cancer, leukemias, and congenital immunodeficiencies. In
addition, the investigation of mesenchymal stem cells secretome

J Interdiscipl Histopathol 2015; 3(2): 58-62

is accumulating continuously increasing interest given the
potential use of these cells in regenerative medicine [103-107].

De Coppi et al. [108] reported the isolation of human and
rodent amniotic fluid-derived stem (AFS) cells that express
embryonic and adult stem cell markers. Undifferentiated AFS
cells expand extensively without feeders, double in 36 h and
are not tumorigenic. Lines maintained for over 250 population
doublings retained long telomeres and a normal karyotype. AFS
cells are broadly multipotent. Clonal human lines verified by
retroviral marking were induced to differentiate into cell types
representing each embryonic germ layer, including cells of
adipogenic, osteogenic, myogenic, endothelial, neuronal, and
hepatic lineages. Differentiated cell derived from human AFS
cells are displaying specialized functions which include neuronal
lineage cells secreting the neurotransmitter L-glutamate or
expressing G-protein-gated inwardly rectifying potassium
channels, hepatic lineage cells producing urea, and osteogenic
lineage cells forming tissue-engineered bone [109-116].

Despite many advances in hESC technology; the ethical
dilemma involving the destruction of a human embryo is an
important factor limiting the development of hESC based
clinical therapies [117]. The application of embryo freezing to
human in-vitro fertilization (IVF) has revolutionized its clinical
practice and helped to convert IVF from an experimental
procedure to the widespread practice. In Australia, more than
7000 babies have been born following the transfer of frozen-

thawed embryos [118,119].

It is worth considering how couples can be encouraged to
donate rather than discard their surplus frozen embryos. At
present, there are numerous frozen embryos ready for donation.
Morcover, it has been speculated that the primary means by
which reactive oxygen species reduce the fertility of semen
subjected to refrigeration or long-term liquid storage is its
impact on sperm DNA integrity [120,121]. An educational
program around the world on relevant legal, social, and clinical
issues may facilitate this, and therefore, give an ethic destination
to the human embryo frozen.
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